Scientists grew defective graphene using Azupyrene, making it more useful for sensors and semiconductors. The defects alter how the material interacts with other substances.
Researchers have discovered a new approach to producing graphene that intentionally incorporates structural defects, enhancing the material’s performance. This advancement could broaden its usefulness across fields such as sensors, batteries, and electronic devices.
A team from the University of Nottingham’s School of Chemistry, the University of Warwick, and Diamond Light Source has created a one-step technique to grow graphene-like films. The method uses a molecule called Azupyrene, whose structure naturally mirrors the type of defect they wanted to introduce. Their findings were published in the journal Chemical Science.
David Duncan, Associate Professor from the University of Nottingham was one of the lead authors on the study, he says: “Our study explores a new way to make graphene, this super-thin, super-strong material is made of carbon atoms, and while perfect graphene is remarkable, it is sometimes too perfect. It interacts weakly with other materials and lacks crucial electronic properties required in the semiconductor industry.
How molecular design shapes graphene
“Usually, defects in material are seen as problems or mistakes that reduce performance; we have used them intentionally to add functionality. We found that the defects can make the graphene more “sticky” to other materials, making it more useful as a catalyst, as well as improving its capability of detecting different gases for use in sensors. The defects can also alter the electronic and magnetic properties of the graphene, for potential applications in the semiconductor industry.”
Graphene consists of a flat arrangement of carbon atoms arranged in six-membered rings. The targeted defect introduces neighboring rings made up of five and seven carbon atoms. Because Azupyrene already has a geometry (or topology) that includes this irregular ring structure, it was used to grow graphene films containing a high proportion of these defects. By adjusting the temperature during growth, the researchers were also able to control how many defects appeared in the final material.
Scientists at the Graphene Institute in Manchester showed that the defective graphene films could be successfully moved onto a variety of surfaces while keeping the defects intact. This marks an important step forward in making the material suitable for integration into practical devices.
Collaboration and advanced techniques
This work used a wide range of advanced tools, bringing together a collaboration across the UK, Germany and Sweden using advanced microscopy and spectroscopy at Diamond Light Source in Oxfordshire and MAX IV in Sweden, as well as the UK national supercomputer ARCHER2, allowing the researchers to study the atomic structure of the defective graphene, demonstrating that the defects were present, and how the defects affected the chemical and electronic properties of the defective graphene.
Professor Reinhard Maurer, Department of Chemistry, University of Warwick, says: “By carefully choosing the starting molecule and the growth conditions, we’ve shown it’s possible to grow graphene in which imperfections can be introduced in a more controlled way. We characterize the signatures of these imperfections by bringing together atomic-scale imaging, spectroscopy, and computational simulation.”
“This study is a testament to what can be achieved through international collaboration and the integration of diverse scientific expertise,” said Dr. Tien-Lin Lee from Diamond Light Source. “By combining advanced microscopy, spectroscopy, and computational modelling across institutions in the UK, Germany, and Sweden, we were able to uncover the atomic-scale mechanisms behind defect formation in graphene, something no single technique or team could have achieved alone.”
#AnalyticalChemistry, #ScienceOfSolutions, #ChemicalAnalysis, #Spectroscopy, #Chromatography, #LabScience, #PrecisionMatters, #ScienceInEveryDrop, #ChemistryMatters, #InnovationThroughAnalysis
For More Details
🌎Visit Our Website : analyticalchemistry.org
✉️Contact Us: mail@analyticalchemistry.org
Get Connected Here:
=====================
Twitter : x.com/ChemistryAwards
Facebook : www.facebook.com/profile.php?id=61566931868357
Pinterest : in.pinterest.com/analyticalchemistry25
Blog : analyticalchemistryawards.blogspot.com
No comments:
Post a Comment